344 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL 5, NO 10, OCTOBER 1995

Behavior of Berenger’s ABC
for Evanescent Waves

Jan De Moerloose, Member, IEEE, and Maria A. Stuchly, Fellow, IEEE

Abstract—A. recently published ABC by Berenger has been
shown to outperform all previous ABC’s by several orders of
magnitude. The cornerstone of this ABC is the so called Perfectly
Matched Layer (PML). This layer absorbs electromagnetic waves
incident at all angles without any reflection. In this letter we eval-
uate basic properties of the PML-medium for incident evanescent
or inhomogeneous plane waves. We show that the evanescent
wave is phase-shifted upon entering the PML-medium but retains
its natural damping. Moreover, a substantial numerical reflection
error must be taken into account, especiaily in the low frequency
range. These results may be important in determining the number
of PML-layers needed to obtain a given accuracy.

1. INTRODUCTION

ERENGER [1], [2] has shown that the PML-medium

behaves as an excellent absorber for incident plane waves
at an arbitrary angle. Since the reflection coefficient for prop-
agating waves is frequency independent, this suggests that the
PML-ABC retains its efficiency in low frequency problems.
This, however, ignores the fact that at low frequencies the
evanescent wave part becomes more and more important. In
this paper, we examine the behavior of the PML-medium for
evanescent waves.

After this work was submitted, two papers on the same
subject were presented at the ACES annual review [3], [4].
The results presented in [3] and [4] are in agreement with
our conclusion. This letter provides more extensive technical
derivations, that ,e.g., explain the cause of the total reflection
from PML at low frequencies. The authors are grateful to
the anonymous reviewer for bringing these papers to their
attention.

1I. PROPAGATION OF AN EVANESCENT
WAVE IN A PML MEDIUM

Although similar results can be obtained for either two-
as well as three-dimensional cases, we consider the two-
dimensional TE-case for simplicity. In this case, the PML
equations can be written as follows:
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Following the approach in [1], the field components of an
evanescent plane wave are
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Given Eg and @, 71, and -2 can be determined from (1) and (2)
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This solution and its opposite correspond to waves that are ex-
ponentially decaying in the positive and negative z-direction,
respectively. G is defined as
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A general field component ¥ with magnitude Wy can be
written as
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The second exponential term of (6) shows that the natural
decay (i.e., the decay that is present even in the absence of
o, and o)) in the positive z-direction is maintained. The first
exponential term of (6) shows that an extra phase factor is
induced by the conductivity o,. As for the (nonevanescent) y-
direction. the usual damping due to o, 1s present in the third
exponential term of (6). This proves that the PML-medium
is not acting as an absorber for evanescent waves. The only
damping that occurs is the inherent or natural damping that
causes the evanescent behavior.
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III. TRANSMISSION THROUGH A PML-PML INTERFACE

Let’s consider first the analytical case. It was proven by
Berenger [1] that under certain conditions a perfect reflec-
tionless transmission occurs at a PML-PML interface. Similar
conclusions may be drawn for the evanescent case. At an
interface normal to xz(z = 0), equalizing the exponents in
(6) for the incident and the transmitted wave, gives
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Considering the continuity of the tangential components of

both fields yields the reflection coefficient
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If the two media are matched, i.e., for ;’—0 = ”—0 for ¢ =
zl,yl, 22,42, and if 0y = oys,then Gy = G2 = 1, and (7)
reduces to 1 = @9, and 7, = 0. This conclusion is similar
to what was obtained for propagating waves. However, since
no additional damping occurs in the PML-medium, a small
number of layers will generally not be sufficient to “absorb”
the evanescent wave.

Moreover, extra numerical errors are induced by the actual
implementation in a finite difference scheme. Without going
into mathematical details, it is clear that the extra phase factor
in the first exponential of (6) behaves as sinhp = k,/w
and thus tends to infinity as w tends to zero. Under these
circumstances the numerical grid is not sampled enough to
adequately represent the strong fluctuations of the field, which
results in a large numerical error. The actual calculation of
the reflection coefficient is slightly more complicated in the
numerical case. We started by calculating the eigenmodes in
both media that correspond to the plane wave solutions in the
analytical case. We then used the continuity of the tangential
electric field E, at the interface and the finite difference
equation for E, itself as a set of boundary conditions (since
the magnetic field is not available at the interface its continuity
could not be demanded). This allowed us to calculate the
exact numerical reflection produced by a layer of constant
conductivity. The same technique was easily extended to other
layer profiles, e.g., parabolic and geometrical [1], by using
standard cascade theory.

IV. NUMERICAL EXAMPLES

A two-dimensional parallel plate waveguide is terminated
by a number of PML layers followed by an electric wall, and
the waveguide is chosen sufficiently long to let the reflected
field propagate freely toward its opposite end. A T'My;-mode
is excited with a gaussian time-dependence just in front of the
PML-medium. The reflection coefficient r, is measured at the
interface (this is important since r, is very much dependent
on location). This is done by performing a second experiment
with no PML-medium present and with free propagation in
both directions. This second experiment gives us the incident
field E,; at the interface, which is then subtracted from the
total field F,, obtained in the first experiment, in order to
calculate the reflected field E,,.. After performing the Fourier
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Fig. 1. Reflection coefficient below cutoff of a PML layer of constant

conductivity.
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Fig. 2. Reflection coefficient below cutoff of PML layers with parabolic
conductivity profile.

transform on the reflected field and the incident field, r, is
obtained as

rp(w) = E@) = Bynl) oy E(w) =FT[E®)].  ©)
Eyi(w)

The width of the waveguide is 1 m with 6 = 8, = 6, = §
cm and 6; = 80 ps. The gaussian pulse width is T' = 106,
which is sufficient to encompass the frequency range from dc
to the cut-off. Fig. 1 shows the amplitude of the reflection
coefficient as a function of frequency for a layer of constant
conductivity (PML(4,C,1) using the notation of [1]). Two
curves are shown for comparison: 1) the reflection coefficient
for the same PML-layer but with a free space termination at
the right end instead of an electric wall in order to prevent
the transmifted wave part from being reflected; and 2) the
reflection coefficient for a free space layer of the same width
as the PML-layer and terminated by an electric wall, The
actual reflection coefficient is obviously a combination of both
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curves. In the low frequency region the numerical reflection
is dominating and even tends to 1 in the static case. Near cut-
off, however, the PML-medium is almost transparent and the
reflection coefficient also goes to 1 as the decay length goes
to infinity (at cut-off).

A second series of experiments was performed with the
same waveguide for a more realistic parabolic conductivity
profile. Fig. 2 shows the reflection coefficient for a PML-layer
width of 5, 10, and 20 cells. The same conclusions may be
drawn in this case.

V. CONCLUSION

Our analysis and numerical simulation show that the damp-
ing properties of the Berenger ABC do not extend to evanes-
cent waves although the PML-medium theoretically still be-
haves as a reflectionless medium. In the low frequency range
a considerable numerical error must be taken into account.
This conclusion may be important to determine the width of

the PML-layer in cases were the dominating wave part is
evanescent, such as discontinuity problems in waveguides and
certain scattering problems.
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