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Behavior of Berenger’s ABC

t-or kNanescent Waves
Jan De Moerloose, Member, IEEE, and Maria A. Stuchly, Fellow, IEEE

Abstract—A recently published ABC by Berenger has been
shown to outperform all previous ABC’s by several orders of

magnitude. The cornerstone of this ABC is the so called Perfectly
Matched Layer (PML). This layer absorbs electromagnetic waves
incident at all angles without any reflection. In this letter we eval-

uate basic properties of the PML-medimn for incident evanescent

or inhomogeneous plane waves. We show that the evanescent
wave is phase-shifted upon entering the PML-medium but retains
its natural damping. Moreover, a substantial numerical reflection

error must be taken into account, especially in the low frequency
range. These results may be important in determining the number

of PML-layers needed to obtain a given accuracy.

I. INTRODUCTION

B

EllENGER [1], [21 has shown that the PML-medittm

behaves as an excellent absorber for incident plane waves

at an arbitrary angle. Since the reflection coefficient for prop-

agating waves is frequency independent, this suggests that the

PML-ABC retains its efficiency in low frequency problems.

This, however, ignores the fact that at low frequencies the

evanescent wave part becomes more and more important. In

this paper, we examine the behavior of the PML-medium for

evanescent waves.

After this work was submitted, two papers on the same

subject were presented at the ACES annual review [3], [4].

The results presented in [3] and [4] are in agreement with

our conclusion. This letter provides more extensive technical

derivations, that ,e.g., explain the cause of the total reflection

from PML at low frequencies. The authors are grateful to

the anonymous reviewer for bringing these papers to their

attention.

II. PROPAGATION OF AN EVANESCENT

WAVE IN A PNIL MEDIUM

Although similar results can be obtained for either two-

as well as three-dimensional cases, we consider the two-

dimensional TE-case for simplicity. In this case, the PML

equations can be written aS fOllOWS:

Manuscript recewed Aprd 24, 1995

a(Hzc + H,{, )
+y

(la)

(lb)

This work was supported by the
Natural Sciences and Err.gmeering Research Council of Canada (NSERC).
B C. Hydm, and TransAltza Utilities

The authors are with the Department of Electrical & Computer Engineering,

Umversity of Victoria. Vlctorla, B C V8W 3P6. Canada.
IEEE Log Number 9414128.

Following the approach in [1], the field components of an

evanescent plane wave are

[E. E,v ~.. Hz,]

= [(Eo ~osh P) (jEo sinh p) H,z.o H2YO].JM(’-TIZ-?ZY),

(2)

Given EO and p, TYl,and 72 can be determined from(1) and (2)

“=fa-%+si”h~“a)

‘=w-’acosh’ “b)
This solution and its opposite correspond to waves that are ex-

ponentially decaying in the positive and negative %-direction,

respective y. G’ is defined as

G = ~w. cosh p2 + WYsinh 92

where

1 – j(Jg/(e(Jti)
‘uIy =

1 – jr7; /(~w)

(4)

(5a)

(5b)

A general field component V with magnitude V. can be

written as

The second exponential term of (6) shows that the natural

decay (i.e., the decay that is present even in the absence of

OZ and Ou) in the positive z-direction is maintained. The first
exponential term of (6) shows that an extra phase factor is

induced by the conductivity o%. As for the (nonevanescent) y-

direction. the usual damping due to my is present in the third

exponential term of (6). This proves that the PML-medium

is not acting as an absorber for evanescent waves. The only

damping that occurs is the inherent or natural damping that

causes the evanescent behavior.
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III. TRANSMISSION THROUGH A PML-PML INTERFACE

Let’s consider first the analytical case. It was proven by

Berenger [1] that under certain conditions a perfect reflec-

donless transmission occurs at a PML-PML interface. Similar

conclusions may be drawn for the evanescent case. At an

interface normal to Z(Z = O), equalizing the exponents in

(6) for the incident and the transmitted wave, gives

(1-’3)%=(’-’3)%‘7)
Considering the continuity of the tangential components of

both fields yields the reflection coefficient

Eov _ G1 COSh P2 – G2 COSh PI

‘p = EO, – G1 cosh pz + Gz cosh pl “
(8)

If the two media are matched, i.e., for ~ = ~ for i =

$1, yl, z2, y2, and if OY1 = avz, then G1 = G2 ~“l, and (7)

reduces to 91 = p2, and rP = O. This conclusion is similar

to what was obtained for propagating waves. However, since

no additional damping occurs in the PML-medium, a small

number of layers will generally not be sufficient to “absorb”

the evanescent wave.

Moreover, extra numerical errors are induced by the actual

implementation in a finite difference scheme. Without going

into mathematical details, it is clear that the extra phase factor

in the first exponential of (6) behaves as sinh p = kZ /0

and thus tends to infinity as w tends to zero. Under these

circumstances the numerical grid is not sampled enough to

adequately represent the strong fluctuations of the field, which

results in a large numerical error. The actual calculation of

the reflection coefficient is slightly more complicated in the

numerical case. We started by calculating the eigenmodes in

both media that correspond to the plane wave solutions in the

analytical case. We then used the continuity of the tangential

electric field EY at the interface and the finite difference

equation for Ev itself as a set of boundary conditions (since

the magnetic field is not available at the interface its continuity

could not be demanded). This allowed us to calculate the

exact numerical reflection produced by a layer of constant

conductivity. The same technique was easily extended to other

layer profiles, e.g., parabolic and geometrical [1], by using

standard cascade theory.

IV. NUMERICAL EXAMPLES

A two-dimensional parallel plate waveguide is terminated

by a number of PML layers followed by an electric wall, and

the waveguide is chosen sufficiently long to let the reflected

field propagate freely toward its opposite end. A l’lklol-mode

is excited with a gaussian time-dependence just in front of the

PML-medium. The reflection coefficient rp is measured at the

interface (this is important since rp is very much dependent

on location). This is done by performing a second experiment

with no PML-medium present and with free propagation in

both directions. This second experiment gives us the incident

field Eui at the interface, which is then subtracted from the

total field Evt obtained in the first experiment, in order to

calculate the reflected field Egr. After performing the Fourier
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Fig. 1. Reflection coefficient below cutoff of a PML layer of constant
conductivity.
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Fig. 2. Reflection coefficient below cutoff of PML layers with parabolic
conductivity profile.

transform on the reflected field and the incident field, Y-Pis

obtained as

E/t(w)– Iq((.d)
rp(w) =

EYJW)
wltb ~(w) = FT[E(t)]. (9)

The width of the waveguide is 1 m with 6 = 6. = 6V = 5

cm and 6t = 80 ps. The gaussian pulse width is T = 10&,

which is sufficient to encompass the frequency range from dc

to the cut-off. Fig. 1 shows the amplitude of the reflection

coefficient as a function of frequency for a layer of constant

conductivity (PML(4,C, 1) using the notation of [1]). Two

curves are shown for comparison: 1) the reflection coefficient
for the same PML-layer but with a free space termination at

the right end instead of an electric wall in order to prevent

the transmitted wave part from being reflected; and 2) the

reflection coefficient for a free space layer of the same width

as the PML-layer and terminated by an electric wall, The

actual reflection coefficient is obviously a combination of both
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curves. In the low frequency region the numerical reflection

is dominating and even tends to 1 in the static case. Near cut-

off, however, the PML-medium is almost transparent and the

reflection coefficient also goes to 1 as the decay length goes

to infinity (at cut-off).

A second series of experiments was performed with the

same waveguide for a more realistic parabolic conductivity

profile. Fig. 2 shows the reflection coefficient for a PML-layer

width of 5, 10, and 20 cells. The same conclusions may be

drawn in this case.

V. CONCLUSION

Our anal ysis and numerical simulation show that the damp-

ing properties of the Berenger ABC do not extend to evanes-

cent waves although the PML-medium theoretically still be-

haves as a reflectionless medium, In the low frequency range

a considerable numerical error must be taken into account.

This conclusion may be important to determine the width of

the PML-layer in cases were the dominating wave part is

evanescent, such as discontinuity problems in waveguides and

certain scattering problems.
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